Gamma Rays from Accreting Black Holes

Roger Blandford KIPAC, Stanford

Accretors

- * Protostars
- * Planets
- * Cataclysmic Variables
- * X-ray Binaries
- * Disk Galaxies!
- * Active Galactic Nuclei
- * Inactive Galactic Nuclei
- * Gamma Ray Bursts?

*

Traditional Disks are:

- * Conservative
- * Stationary
- * Radiative
- * Thin
- * Fluid dynamical

Traditional Disk Power

Torque

Keplerian Disk

Angular Momentum

Energy

$$\frac{d}{dr}(G - \dot{M}L) = 0$$

$$\frac{dL}{dr} = -\frac{d}{dr}(G\Omega - \dot{M}E) = 3\dot{M}\frac{dE}{dr}$$

Dissipation

Binding Energy

Non-conservative disks

- Outflows, winds, jets remove, mass, angular momentum, energy
- Thick (H~r/M)
 - Ion pressure
 - Dissipated energy heats ions $E_{Edd} = 4\pi M/\kappa$
 - Poor ion-electron coupling
 - Cold electrons don't radiate
 - Radio galaxies
 - Radiation pressure
 - Thomson scattering optical depth

 - Photons trapped within $r \sim \dot{M} \kappa / 4\pi c$ Advected inwards
 - BALQs

Torque Transports Energy

Angular Momentum Transport

$$F_L = G - M L \sim r^{1/2} \sim 0$$

Energy Transport

$$F_E = G\Omega - MB \sim r^{-1} \sim 0$$

$$B = \frac{1}{2}V^2 + \Phi + W \sim \Omega L > 0$$

Energy transport from small r by torque unbinds gas at large r. leeting Bernoulli Function

ADAF vs ADIOS

* Advection-Dominated Accretion Flow

Liberated binding energy advected across horizon

Quataert

* ADiabatic Inflow-Outflow Solution

- Liberated binding energy carried off in a wind
- Removes mass, angular momentum and energy
- Mass accretion<<mass supply</p>
- Hydromagnetic for low mass supply rate
- Radiatively driven for high mass supply rate?
- Accretion efficiency always high $\sim 0.1c^2$

RB & Begelman 1999, 2004

These are radically different and distinguishable

Self-Similar, Fluid, Disk-Wind Model

* Disk

- Bound
- Gyrentropic
- Circulation
- Inflow $\dot{M} \propto r^n$
- * Wind
 - Thermal Front
 - Unbound
- * Jet
 - Evacuated cone

1 ix 05

Sketch Disk Model

- * Radio spectrum S ~ $v^{1/3}$, v<1THz
- * $T\sim 10^{11}(\lambda/1\text{cm})^{5/3}(r/6\text{m})^{-2}\text{K}$
- * Optically thin at all radii for λ <1cm
- * Superpose radiation from a range of radii
- * Polarization (Broderick+B)

- X-ray emission from synchrotron radiation from high energy tail (cf Liu)
- * Jet emission model also possible (Falcke)

Sketch Disk Model

- * $(dM/dt)_{sup} \sim 10^{21-22} g/s$
- * $(dM/dt)_{acc} \sim 10^{18-19} g/s$
- * Power release ~10³⁸⁻³⁹ erg/s
- * Luminosity $\sim 10^{36}$ erg/s => wind
 - eg 10^{21} g/s at 5000km/s
 - Shocks at $\sim (V/c_s)^{1/2} r_B \sim 1$ lt yr (cf Atoyan)
 - Could be competitive with colliding stellar winds
 - Particle acceleration site for H.E.S.S., GLAST photons?
 - 10TeV photons must originate outside10m

Real Disks are Magentized

* Magnetorotational Instability

Hawley et al

1 ix 05

GLAST GC Me

Jet/Outflow Formation

- * Gas dynamics flows
- * Hadronic jets
- * Hydromagnetic wind launched from disk
 - Toroidal flux loops
 - Poloidal channels
 - Centrifugally-driven
- * Electromagnetic-power from spinning hole
 - Collimated by disk wind
- * Hybrid Models

Energy Extraction from Spinning Hole

- * Electromagnetic extraction of energy from hole
- * Causal?
- * Efficient?

Also Gammie, Komissarov, Hawley, Koide et al

Unipolar Induction

* Rules of thumb:

```
\Phi \sim B R^2; V \sim \Omega \Phi
```

*
$$I \sim V / Z_0$$
; $P \sim V I$

	$\sim v / Z_0$, 1	~ V I	
	PWN	AGN	GRB
В	100 MT	1 T	1 TT
ν	10 Hz	10 μ Hz	1 kHz
R	10 km	10 Tm	10 km
V	3 PV	300 EV	30 ZV
l	300 TA	3 EA	300 EA
P	100 XW	1 TXW	10 PXW

UHECR!

Simulations are transforming our understanding of disks

- * MHD
- * 3D
- * GR
- * Plot of magnetic energy density

Villiers et al

More Variations

- * Energy transport
 - AC transmission (eg Spruit, Thompson)
 - eg chaotic electromagnetic fields with length scale km, characteristic of the source variation
 - − E~B as relativistic
 - Dynamically like radiation-dominated outflow
 - Scalar pressure
 - No active collimation
 - Natural particle acceleration mechanisms

 $\sim 100-1000$

More Variations

- * Energy Transport
 - Local DC transmission
 - Episodic ejection of magnetically-confined jet segments
 - No large scale current circuits
 - Relativistic motion
 - Changing polarity of parallel field reflects changing polarity of disk field
 - Disk may eject loops of toroidal field or be launched and collimated by vertical field

More Variations

- * Energy transport
 - Global DC transmission
 - Large scale order in magnetic field
 - Large scale current circuits
 - Toroidal magnetic field dominates parallel field far from the source
 - If flux is conserved, parallel field ~ (Area)⁻¹
 - If current conserved toroidal field ~ (Area)-1/2
 - E~B still and energy carried by Poynting flux $\sim B^2c$
 - Center of momentum frame moves relativistically
 - Need equipartition particle pressure along axis to oppose hoop stress of toroidal field in comoving frame.

Pictor A

Magnetic Pinch?

19

Pictor A

Electromagnetic Transport

10¹⁸ not 10¹⁷ A

DC not AC

No internal shocks

New particle acceleration mechanisms

Wilson et al

Current Flow

Nonthermal emission is ohmic dissipation of current flow?

Pinch stabilized by velocity gradient

Equipartition ? core

IGN

Baganoff, Morris etal

Sgr A* Jet? $\Phi \sim 3PV$ $I \sim 300TA$ $L_{EM} \sim 10^{30}W$ $L_{wind} 10^{32}W$

Magnetically-pinched current?

Archimedean Disks

* $r_{out} \sim (c/v_{out})^2 r_{in} \sim 10^6 r_{in}$.

RB, Wang et al

Archimedean Disks

* $r_{out} \sim (c/v_{out})^2 r_{in} \sim 10^6 r_{in}$.

Archimedean Disks

* $r_{out} \sim (c/v_{out})^2 r_{in} \sim 10^6 r_{in}$.

$$B_r \propto r^{-2}$$

$$P_{mag} \propto r^{-4}$$

$$B_r \propto r^{-2}$$
 $P_{mag} \propto r^{-4}$
 $P_{gas} \propto r^{-5/2}$

Net radial field Conservative disk Ignore irradiation, self-gravitation etc

Magnetic pressure dominates and field lines escape

GLAST GC Meeting

Twister

$$< B_r > \sim < B_\phi > \sim \left(\frac{r}{H}\right) < B_z > \propto r^{-5/4}$$

- •Mean field configuration is MRI unstable.
- •Growth time ~ Period
- $\lambda < H$
- Conjecture
 - •Mean field is responsible for the torque
 - •Random component is responsible for effective resistivity and viscosity

Test with numerical simulations

Inner Disk - Black Holes

Asymmetric Outflows/Jets

Can you measure the toroidal field pattern?

Jet Fuel

- * Relativistic Jets Powered by Black Hole Spin
- * Thick disks spin down hole electromagnetically
- * Thin disks spin up hole through accretion

10

 \dot{M}

 \dot{M}_{E}

0.1

Jet properties depend upon mass supply rate and history. Thick Radiation Disk Spin Up/Down Unsteady

Thin Radiative Disk Spin Up Radio Quiet

Thick Ion Disk Spin Down, Steady, Radio Loud

Jet Fuel

- Relativistic Jets Powered by Black Hole Spin
- * Thick disks spin down hole electromagnetically
- * Thin disks spin up hole through accretion

Jet properties depend upon mass supply rate and history.

1 ix 05

Summary

- * Sgr A* disk may drive large outflow contributing to bipolar lobes and X-ray jet
- * Reasonable interpretations of disk spectrum
- * TeV emission does not come from Sgr A* hole
- * GLAST observations may help us understand IGN like Sgr A*
- * Blazar GeV emission comes from relativistic jets
- * GLAST observations should diagnose the jet composition and dynamics